Versatility of a Salmonella Loop-Mediated Isothermal Amplification Assay Using Multiple Platforms and Master Mixes in Animal Food Matrices

Author:

Domesle Kelly J1ORCID,Young Shenia R1ORCID,McDonald Ryan C1ORCID,Ge Beilei1ORCID

Affiliation:

1. U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology , 8401 Muirkirk Rd , Laurel, MD 20708, USA

Abstract

Abstract Background Improvement in Salmonella detection methods greatly enhances the efficiency of various food testing programs. A Salmonella loop-mediated isothermal amplification (LAMP) assay has been validated in animal food through multi-laboratory validation. Objective The study aimed to demonstrate the versatility of this molecular assay while expanding it to multiple platforms and various reagent choices for use in animal food testing. Methods Following the U.S. Food and Drug Administration (FDA)’s Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, we examined the inclusivity, exclusivity, and LOD of the assay using two platforms (7500 Fast and Genie II) and three LAMP master mixes (GspSSD, GspSSD2.0, and WarmStart) in seven animal food matrixes (dry cat food, dry dog food, cattle feed, dairy feed, horse feed, poultry feed, and swine feed). The FDA’s Bacteriological Analytical Manual (BAM) Salmonella culture method was the reference method. Results Inclusivity and exclusivity data were consistent among all six platform and master mix combinations with a few exceptions. Comparable LODs were observed down to the single-cell level (WarmStart was 10-fold less sensitive). Performance was similar to the BAM method for detecting fractional positive results in seven animal food matrixes. Nonetheless, LAMP time to positive results and annealing/melting temperature differed among master mixes and platforms. Conclusion The Salmonella LAMP assay was successfully validated in two platforms and three master mixes, making it a flexible tool for use by the FDA’s field laboratories in regulatory testing of animal food and for adoption by other food testing programs. Highlights We demonstrated the LAMP assay’s versatility on two platforms and three master mixes for the rapid and reliable screening of Salmonella in seven animal food matrixes. GspSSD2.0 was the fastest master mix (time to positive results as early as 3.5 min) while Genie II had several attractive features from a user perspective.

Funder

BAM Council

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3