Comparative Greenness Metric Estimates for Content Uniformity Testing of Anti-Cov-2, GS-5734 in Commercial Vials: Validated Micellar Electrokinetic Chromatographic Assay

Author:

Elonsy Sohila M1ORCID,Kamal Miranda F1ORCID,Hamdy Mohamed M A2ORCID,Abdel Moneim Mona M2ORCID

Affiliation:

1. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt

Abstract

Abstract Background The antiviral drug GS-5734 remdesivir is a new phosphoramidate prodrug developed initially as a treatment for Ebola virus which then proved to have antiviral properties against other viruses. After clinical trials, it was the first antiviral to be approved by the U.S. Food and Drug Administration in 2020 to treat severe coronavirus (COVID-19) cases. The widespread current pandemic gave an urge to its fast production and marketing. Thus, new analytical methods must be available for its analysis in a fast and easy manner with low cost to be applicable in all laboratories. Objective In the current study, a green and economic micellar electrokinetic chromatographic (MEKC) method is proposed for remdesivir analysis. Methods A fused-silica capillary (58.5 cm × 50 μm id, 50 cm effective length) with 20 mM borate buffer (pH 9) and 25 mM sodium dodecyl sulfate was used under a positive potential of 30 kV at 25°C with detection at 245 nm. Results Remdesivir analysis was achieved in approximately 5 min. The method proved to be linear in range of 1–50 μg/mL with correlation coefficient, r > 0.999. Conclusion The MEKC method proposed was applied to the analysis of remdesivir in its commercial vials. The method was validated per International Conference on Harmonization guidelines. Highlights Green chemistry has been the focus of the analytical community in the past few years. This method is considered green due to its low energy and solvent consumption without sacrificing the method’s sensitivity or selectivity. The method’s green profile has been assessed by different greenness assessment scales to ensure the method is eco-friendly and can be used in the pharmaceutical industry.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3