Affiliation:
1. Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
Abstract
AbstractSuccessful reproduction requires contributions from both the male and the female. In Drosophila, contributions from the male include accessory gland proteins (Acps) that are components of the seminal fluid. Upon their transfer to the female, Acps affect the female's physiology and behavior. Although primary sequences of Acp genes exhibit variation among species and genera, the conservation of protein biochemical classes in the seminal fluid suggests a conservation of functions. Bioinformatics coupled with molecular and genetic tools available for Drosophila melanogaster has expanded the functional analysis of Acps in recent years to the genomic/proteomic scale. Molecular interplay between Acps and the female enhances her egg production, reduces her receptivity to remating, alters her immune response and feeding behavior, facilitates storage and utilization of sperm in the female and affects her longevity. Here, we provide an overview of the D. melanogaster Acps and integrate the results from several studies that bring the current number of known D. melanogaster Acps to 112. We then discuss several examples of how the female's physiological processes and behaviors are mediated by interactions between Acps and the female. Understanding how Acps elicit particular female responses will provide insights into reproductive biology and chemical communication, tools for analyzing models of sexual cooperation and/or sexual conflict, and information potentially useful for strategies for managing insect pests.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
306 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献