Affiliation:
1. Duke University Hospital, Department of Diagnostic Radiology, Durham, NC
2. Perelman School of Medicine, Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA
Abstract
Abstract
Gene expression profiling has reshaped our understanding of breast cancer by identifying four molecular subtypes: (1) luminal A, (2) luminal B, (3) human epidermal growth factor receptor 2 (HER2)-enriched, and (4) basal-like, which have critical differences in incidence, response to treatment, disease progression, survival, and imaging features. Luminal tumors are most common (60%–70%), characterized by estrogen receptor (ER) expression. Luminal A tumors have the best prognosis of all subtypes, whereas patients with luminal B tumors have significantly shorter overall and disease-free survival. Distinguishing between these tumors is important because luminal B tumors require more aggressive treatment. Both commonly present as irregular masses without associated calcifications at mammography; however, luminal B tumors more commonly demonstrate axillary involvement at diagnosis. HER2-enriched tumors are characterized by overexpression of the HER2 oncogene and low-to-absent ER expression. HER2+ disease carries a poor prognosis, but the development of anti-HER2 therapies has greatly improved outcomes for women with HER2+ breast cancer. HER2+ tumors most commonly present as spiculated masses with pleomorphic calcifications or as calcifications alone. Basal-like cancers (15% of all invasive breast cancers) predominate among “triple negative” cancers, which lack ER, progesterone receptor (PR), and HER2 expression. Basal-like cancers are frequently high-grade, large at diagnosis, with high rates of recurrence. Although imaging commonly reveals irregular masses with ill-defined or spiculated margins, some circumscribed basal-like tumors can be mistaken for benign lesions. Incorporating biomarker data (histologic grade, ER/PR/HER2 status, and multigene assays) into classic anatomic tumor, node, metastasis (TNM) staging can better inform clinical management of this heterogeneous disease.
Publisher
Oxford University Press (OUP)
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献