Are metabolic adaptations to weight changes an artefact?

Author:

Müller Manfred J1,Heymsfield Steven B2ORCID,Bosy-Westphal Anja1

Affiliation:

1. Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

2. Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA

Abstract

ABSTRACT Background Adaptive thermogenesis (AT) is currently defined as the fat-free mass (FFM)–independent change in resting energy expenditure (REE) in response to caloric restriction (CR) or overfeeding (OF). So far, the impact of changes in the anatomical and molecular composition of FFM on AT has not been addressed. Objectives To assess the impact of changes in FFM composition on AT. Methods FFM was assessed in 32 healthy young men during controlled 21-d CR and 14 d of subsequent OF. Anatomical (i.e., the organ/tissue level) and molecular (i.e., water, mineral, and protein content and thus body density) composition of FFM were characterized. REE was measured by indirect calorimetry. Results With CR, body weight and REE decreased by 4.2 ± 0.9 kg and 173 ± 107 kcal/d, respectively, with corresponding increases of 3.5 ± 1.2 kg and 194 ± 110 kcal/d during OF (P < 0.001 for all changes). Changes in FFM explained 56.7% and 66.7% of weight loss and weight gain, respectively. Weight changes were associated with changes in various anatomical (i.e., masses of skeletal muscle, liver, kidneys, and brain) and molecular components (total body water, protein, and bone minerals) of FFM. After adjustments for changes in FFM only, AT was 116 ± 127 (P < 0.001) and 27 ± 115 kcal/d (NS) with CR and OF, respectively. Adjustments for FFM and its anatomical and molecular composition reduced AT in response to CR to 83 ± 116 and 122 ± 123 kcal/d (P < 0.05 and P < 0.001) whereas during OF, AT became significant at 87 ± 146 kcal/d (anatomical; P < 0.05) and 86 ± 118 kcal/d (molecular; P < 0.001). Conclusions Adjusting changes in REE with under- and overfeeding for the corresponding changes in the anatomical and molecular composition of FFM decreased AT after CR and increased AT after OF, but overall adjusted AT was likely not large enough in magnitude to be able to prevent weight loss or resist weight gain.

Funder

German Ministry of Education and Research

German Research Foundation

BMBF

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3