Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study

Author:

Fu Benjamin C123,Hullar Meredith A J1,Randolph Timothy W1ORCID,Franke Adrian A4,Monroe Kristine R5,Cheng Iona6ORCID,Wilkens Lynne R4,Shepherd John A4,Madeleine Margaret M1,Le Marchand Loïc4,Lim Unhee4ORCID,Lampe Johanna W12ORCID

Affiliation:

1. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

2. Department of Epidemiology, University of Washington, Seattle, WA, USA

3. Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA

4. Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA

5. Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA

6. Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA

Abstract

Abstract Background Trimethylamine N-oxide (TMAO), a compound derived from diet and metabolism by the gut microbiome, has been associated with several chronic diseases, although the mechanisms of action are not well understood and few human studies have investigated microbes involved in its production. Objectives Our study aims were 1) to investigate associations of TMAO and its precursors (choline, carnitine, and betaine) with inflammatory and cardiometabolic risk biomarkers; and 2) to identify fecal microbiome profiles associated with TMAO. Methods We conducted a cross-sectional analysis using data collected from 1653 participants (826 men and 827 women, aged 60–77 y) in the Multiethnic Cohort Study. Plasma concentrations of TMAO and its precursors were measured by LC-tandem MS. We also analyzed fasting blood for markers of inflammation, glucose and insulin, cholesterol, and triglycerides (TGs), and further measured blood pressure. Fecal microbiome composition was evaluated by sequencing the 16S ribosomal RNA gene V1–V3 region. Associations of TMAO and its precursors with disease risk biomarkers were assessed by multivariable linear regression, whereas associations between TMAO and the fecal microbiome were assessed by permutational multivariate ANOVA and hurdle regression models using the negative binomial distribution. Results Median (IQR) concentration of plasma TMAO was 3.05 μmol/L (2.10–4.60 μmol/L). Higher concentrations of TMAO and carnitine, and lower concentrations of betaine, were associated with greater insulin resistance (all P < 0.02). Choline was associated with higher systolic blood pressure, TGs, lipopolysaccharide-binding protein, and lower HDL cholesterol (P ranging from <0.001 to 0.03), reflecting an adverse cardiometabolic risk profile. TMAO was associated with abundance of 13 genera (false discovery rate < 0.05), including Prevotella, Mitsuokella, Fusobacterium, Desulfovibrio, and bacteria belonging to the families Ruminococcaceae and Lachnospiraceae, as well as the methanogen Methanobrevibacter smithii. Conclusions Plasma TMAO concentrations were associated with a number of trimethylamine-producing bacterial taxa, and, along with its precursors, may contribute to inflammatory and cardiometabolic risk pathways.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3