Affiliation:
1. Health Physics and Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
Abstract
Abstract
A novel ‘photoneutron (PN) volume dose equivalent’ methodology was hypothesized and applied for the first time for estimating PN second primary cancer (PN-SPC) risks in high-energy X-ray medical accelerators. Novel position-sensitive mega-size polycarbonate dosimeters with 10B converter (with or without cadmium covers) were applied for determining fast, epithermal and thermal PN dose equivalents at positions on phantom surface and depths. The methodology was applied to sites of tumors such as brain, stomach and prostate in 47 patients. The PN-SPC risks were estimated for specific organs/tissues using linear International Commission on Radiological Protection cancer risks and were compared with some available data. The corresponding PN-SPC risk estimates ranged from 1.450 × 10−3 to 1.901 cases per 10 000 persons per Gray. The method was applied to 47 patients for estimating PN-SPC risks in patients undergoing radiotherapy. The PN-SPC risk estimates well match those calculated by simulation but are comparatively different from those estimated by ‘PN point dose equivalent’ methods, as expected.
Funder
Iran National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Public Health, Environmental and Occupational Health,Radiology Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献