The luminous, hard state can’t be MAD

Author:

Fragile P Chris1ORCID,Chatterjee Koushik2ORCID,Ingram Adam3ORCID,Middleton Matthew4

Affiliation:

1. Department of Physics and Astronomy, College of Charleston , Charleston SC 29424 , USA

2. Black Hole Initiative at Harvard University , 20 Garden Street, Cambridge MA 02138 , USA

3. School of Mathematics, Statistics, and Physics, Newcastle University , Newcastle upon Tyne NE1 7RU , UK

4. School of Physics and Astronomy, University of Southampton, Highfield , Southampton SO17 1BJ , UK

Abstract

ABSTRACT We present a straightforward argument for why the luminous, hard state of black hole X-ray binaries (BHXRBs) cannot always be associated with a magnetically arrested accretion disc (MAD). It relies on three core premises: (1) that the type-C quasi-periodic oscillation (QPO) is best explained by Lense–Thirring (LT) precession of a tilted, inner, hot flow; (2) that observed optical and infrared (IR) QPOs with the same or lower frequency as the type-C QPO suggest the jet, too, must precess in these systems; and (3) that numerical simulations of MADs show that their strong magnetic fields promote alignment of the disc with the black hole and, thereby, suppress LT precession. If all three premises hold true, then, at least whenever the optical and IR QPOs are observed alongside the type-C QPO, these systems cannot be in the MAD state. Extending the argument further, if the type-C QPO is always associated with LT precession, then it would rule out MADs anytime this timing feature is seen, which covers nearly all BHXRBs when they are in the luminous, hard and hard-intermediate states.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

John Templeton Foundation

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3