The Cause of the Difference in the Propagation Distances between Compact and Transient Jets in Black Hole X-Ray Binaries

Author:

Zdziarski Andrzej A.ORCID,Heinz SebastianORCID

Abstract

Abstract Accreting black hole binaries change their properties during evolution, passing through two main luminous states, dominated by either hard or soft X-rays. In the hard state, steady compact jets emitting multiwavelength radiation are present. Those jets are usually observed in radio, and when resolved, their extent is ≲1015 cm. Then, during hard-to-soft transitions, powerful ejecta in the form of blobs appear. They are observed up to distances of ∼1018 cm, which are ≳1000 times larger than the extent of hard-state jets. On the other hand, estimates of the accretion rates during most luminous hard states and the hard-to-soft transitions are very similar, implying that maximum achievable powers of both types of jets are similar and cannot cause a huge difference in their propagation. Instead, we explain the difference in the propagation length by postulating that the ejecta consist of electron-ion plasmas, whereas the hard-state jets consist mostly of electron–positron pairs. The inertia of the ejecta are then much higher than those of compact jets, and the former are not readily stopped by ambient media. A related result is that the accretion flow during the hard state is of standard and normal evolution, while it is a magnetically arrested disk during transient ejections. The pairs in hard-state jets can be produced by collisions of photons of the hard spectrum emitted by hot accretion flows within the jet base. On the other hand, the X-ray spectra during the state transitions are relatively soft, and the same process produces much fewer pairs.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3