Posterior sampling of the initial conditions of the universe from non-linear large scale structures using score-based generative models

Author:

Legin Ronan123ORCID,Ho Matthew4ORCID,Lemos Pablo1235ORCID,Perreault-Levasseur Laurence12356,Ho Shirley5,Hezaveh Yashar12356ORCID,Wandelt Benjamin457

Affiliation:

1. Department of Physics, Université de Montréal , Montréal H2V 0B3 , Canada

2. Mila - Quebec Artificial Intelligence Institute , Montréal H2S 3H1 , Canada

3. Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning , Montréal H2V 0B3 , Canada

4. Sorbonne Université, CNRS , UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, Paris 75014 , France

5. Center for Computational Astrophysics, Flatiron Institute , 162 5th Avenue, New York, NY 10010 , USA

6. Perimeter Institute for Theoretical Physics , Waterloo, Ontario, ON N2L 2Y5 , Canada

7. Sorbonne Université, Institut Lagrange de Paris , 98 bis boulevard Arago, Paris 75014 , France

Abstract

ABSTRACT Reconstructing the initial conditions of the universe is a key problem in cosmology. Methods based on simulating the forward evolution of the universe have provided a way to infer initial conditions consistent with present-day observations. However, due to the high complexity of the inference problem, these methods either fail to sample a distribution of possible initial density fields or require significant approximations in the simulation model to be tractable, potentially leading to biased results. In this work, we propose the use of score-based generative models to sample realizations of the early universe given present-day observations. We infer the initial density field of full high-resolution dark matter N-body simulations from the present-day density field and verify the quality of produced samples compared to the ground truth based on summary statistics. The proposed method is capable of providing plausible realizations of the early universe density field from the initial conditions posterior distribution marginalized over cosmological parameters and can sample orders of magnitude faster than current state-of-the-art methods.

Funder

NASA

Fonds de recherche du Québec

ANR

Institut Lagrange de Paris

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3