Denoising diffusion delensing: reconstructing the non-Gaussian CMB lensing potential with diffusion models

Author:

Flöss Thomas12ORCID,Coulton William R34ORCID,Duivenvoorden Adriaan J5,Villaescusa-Navarro Francisco56,Wandelt Benjamin D57

Affiliation:

1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen , Nijenborgh 3, NL-9747 AG Groningen , the Netherlands

2. Kapteyn Astronomical Institute, University of Groningen , NL-9700 AV Groningen , the Netherlands

3. Kavli Institute for Cosmology , Madingley Road, Cambridge CB3 0HA , UK

4. DAMTP, Centre for Mathematical Sciences , Wilberforce Road, Cambridge CB3 0WA , UK

5. Center for Computational Astrophysics , 162 5th Avenue, New York, NY 10010 , USA

6. Department of Astrophysical Sciences, Princeton University , 4 Ivy Lane, Princeton, NJ 08544 , USA

7. Sorbonne Université , CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, F-75014 Paris , France

Abstract

ABSTRACT Optimal extraction of cosmological information from observations of the cosmic microwave background (CMB) critically relies on our ability to accurately undo the distortions caused by weak gravitational lensing. In this work, we demonstrate the use of denoising diffusion models in performing Bayesian lensing reconstruction. We show that score-based generative models can produce accurate, uncorrelated samples from the CMB lensing convergence map posterior, given noisy CMB observations. To validate our approach, we compare the samples of our model to those obtained using established Hamiltonian Monte Carlo methods, which assume a Gaussian lensing potential. We then go beyond this assumption of Gaussianity, and train and validate our model on non-Gaussian lensing data, obtained by ray-tracing N-body simulations. We demonstrate that in this case, samples from our model have accurate non-Gaussian statistics beyond the power spectrum. The method provides an avenue towards more efficient and accurate lensing reconstruction, which does not rely on an approximate analytical description of the posterior probability. The reconstructed lensing maps can be used as an unbiased tracer of the matter distribution, and to improve delensing of the CMB, resulting in more precise cosmological parameter inference.

Funder

University of Groningen

Simons Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3