Rapid localization of gravitational wave hosts with FIGARO

Author:

Rinaldi Stefano12ORCID,Del Pozzo Walter12ORCID

Affiliation:

1. Dipartimento di Fisica ‘E. Fermi’, Università di Pisa , I-56127 Pisa, Italy

2. INFN, Sezione di Pisa , I-56127 Pisa, Italy

Abstract

ABSTRACT The copious scientific literature produced after the detection of GW170817 electromagnetic counterpart demonstrated the importance of a prompt and accurate localization of the gravitational wave within the comoving volume. In this letter, we present figaro, a ready to use and publicly available software that relies on Bayesian non-parametrics. figaro is designed to run in parallel with parameter estimation algorithms to provide updated three-dimensional volume localization information. Differently from any existing algorithms, the analytical nature of the figaro reconstruction allows a ranking of the entries of galaxy catalogues by their probability of being the host of a gravitational wave event, hence providing an additional tool for a prompt electromagnetic follow up of gravitational waves. We illustrate the features of figaro on binary black holes as well as on GW170817. Finally, we demonstrate the robustness of figaro by producing so-called pp-plots and we present a method based on information entropy to assess when, during the parameter estimation run, it is reasonable to begin releasing skymaps.

Funder

NSF

STFC

MPS

Australian Research Council

CNRS

INFN

MEXT

Japan Society for the Promotion of Science

NRF

MSIT

Academia Sinica

MOST

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3