Stereoscopic diagnosing of a filament-cavity flux rope system by tracing the path of a two-sided-loop jet

Author:

Tan Song12,Shen Yuandeng1324ORCID,Zhou Xinping12,Duan Yadan12,Tang Zehao1ORCID,Zhou Chengrui12,Yao Surui1

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650216, China

2. University of Chinese Academy of Sciences, School of Astronomy and Spce Science , Beijing 100049, China

3. State Key Laboratory of Space Weather, Chinese Academy of Sciences , Beijing 100190, China

4. Yunnan Key Laboratory of Solar Physics and Space Science , Kunming 650216, China

Abstract

ABSTRACT The fine magnetic structure is vitally important to understanding the formation, stabilization, and eruption of solar filaments, but so far, it is still an open question yet to be resolved. Using stereoscopic observations taken by the Solar Dynamics Observatory and Solar TErrestrial RElations Obsevatory, we studied the generation mechanism of a two-sided-loop jet (TJ) and the ejection process of the jet plasma into the overlying filament-cavity system. We find that the generation of the two-sided-loop jet was due to the magnetic reconnection between an emerging flux loop and the overlying filament. The jet’s two arms ejected along the filament axis during the initial stage. Then, the north arm bifurcated into two parts at about 50 Mm from the reconnection site. After the bifurcation, the two bifurcated parts were along the filament axis and the cavity which hosted the filament, respectively. By tracing the ejecting plasma flows of the TJ inside the filament, we not only measured that the magnetic twist stored in the filament was at least 5π but also found that the fine magnetic structure of the filament-cavity flux rope system is in well agreement with the theoretical results of Magnetic flux rope models.

Funder

Natural Science Foundation of China

National Key R&D Program of China

West Light Foundation of Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3