Double-decker Pair of Flux Ropes Formed by Two Successive Tether-cutting Eruptions

Author:

Shen YuandengORCID,Liu Dongxu,Yao Surui,Zhou Chengrui,Tang Zehao,Qu ZhiningORCID,Zhou XinpingORCID,Duan YadanORCID,Tan Song,Ibrahim Ahmed AhmedORCID

Abstract

Abstract Double-decker filaments and their eruptions have been widely observed in recent years, but their physical formation mechanism is still unclear. Using high spatiotemporal resolution, multi-wavelength observations taken by the New Vacuum Solar Telescope and the Solar Dynamics Observatory, we show the formation of a double-decker pair of flux rope system by two successive tether-cutting eruptions in a bipolar active region. Due to the combined effect of photospheric shearing and convergence motions around the active region’s polarity inversion line (PIL), the arms of two overlapping inverse-S-shaped short filaments reconnected at their intersection, which created a simultaneous upward-moving magnetic flux rope (MFR) and a downward-moving post-flare-loop (PFL) system striding the PIL. Meanwhile, four bright flare ribbons appeared at the footpoints of the newly formed MFR and the PFL. As the MFR rose, two elongated flare ribbons connected by a relatively larger PFL appeared on either side of the PIL. After a few minutes, another MFR formed in the same way at the same location and then erupted in the same direction as the first one. Detailed observational results suggest that the eruption of the first MFR might experienced a short pause before its successful eruption, while the second MFR was a failed eruption. This implies that the two newly formed MFRs might reach a new equilibrium at relatively higher heights for a while, which can be regarded as a transient double-decker flux rope system. The observations can well be explained by the tether-cutting model, and we propose that two successive confined tether-cutting eruptions can naturally produce a double-decker flux rope system, especially when the background coronal magnetic field has a saddle-like distribution of magnetic decay index profile in height.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3