Phytogenic actives supplemented in hyperprolific sows: effects on maternal transfer of phytogenic compounds, colostrum and milk features, performance and antioxidant status of sows and their offspring, and piglet intestinal gene expression

Author:

Reyes-Camacho David1,Vinyeta Ester2,Pérez Jose Francisco1ORCID,Aumiller Tobias2,Criado Lourdes3,Palade Laurentiu Mihai4,Taranu Ionelia4,Folch Josep M3,Calvo M Angels5,Van der Klis Jan Dirk2,Solà-Oriol David1ORCID

Affiliation:

1. Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain

2. Product Development and Innovations, Delacon Biotechnik GmbH, Engerwitzdorf, Austria

3. Centre for Research in Agricultural Genomics, Department of Animal Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain

4. Laboratory of Animal Biology, National Research and Development Institute for Animal Biology and Nutrition, IBNA, Balotesti, Romania

5. Research Group on Applied and Environmental Microbiology, Department of Animal Anatomy and Health, Universitat Autònoma de Barcelona, Bellaterra, Spain

Abstract

Abstract Phytogenic actives (PA) are plant-derived natural bioactive compounds that may promote livestock health and well-being, as well as improve growth performance and production efficiency. The current study aims to evaluate their effects on sows and their offspring. Eighty-one hyperprolific sows (up to parity 7) were assigned to 3 experimental treatments. Control sows were offered a nonsupplemented diet during gestation and lactation, and treated sows were fed the control diet supplemented with 1 g/kg of a blend of PA (BPA) in lactation (L) or during gestation and lactation (GL). An evaluation was made of placental and milk maternal transfer of these BPA and colostrum–milk features, sows and piglets antioxidant status, reproductive performance (litter size), body weight (BW) changes, weaning-estrus interval, and litter performance. Finally, piglet´s jejunum gene expression was measured. The BPA supplementation during gestation (GL) increased the number of piglets born alive (P = 0.020) and reduced (P < 0.05) the newborn piglets BW, while there were no differences among treatments on the suckling (day 20) and weaned (day 7) piglets BW (P > 0.05). Dietary phytogenic volatile compounds reached GL placental fluid, and milk of L and GL sows (P < 0.05). Moreover, colostrum protein in GL and milk fat content in L and GL were increased (P < 0.05). Milk of GL showed inhibitory activity against Bacillus subtilis and Staphylococcus aureus (P < 0.05). Antioxidant status of GL sows showed an enhanced (P < 0.05) of catalase (CAT) and total antioxidant capacity levels at early gestation (day 35), whereas higher levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzymes at late gestation (day 110). Likewise, GL newborn piglets showed higher CAT levels, whereas both CAT and SOD levels in suckling piglets, as well as CAT, SOD, and GSH-Px in weaned piglets, were increased in L and GL (P < 0.05). Jejunum messenger ribonucleic acid abundance of suckling piglets in L and GL groups showed overexpression of barrier function MUC2, digestive enzyme IDO, and immune response PPARGC-α, TNF-α, TGF-β1, and IL-10 genes (P < 0.05). In conclusion, dietary BPA supplementation in hyperprolific sows increased the litter size (born alive) and improved the composition and bioactivity of colostrum and milk, besides, modified the antioxidant status of sows and their offspring, as well as the suckling piglets gut health gene expression. Several BPA volatile compounds were prenatal and postnatal maternally transferred (placental fluid and milk).

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3