Affiliation:
1. Imperial College London Department of Mathematics, , London SW7 2AZ, UK
Abstract
Summary
Theoretical evidence is given that it is possible for superhydrophobicity to enhance steady laminar convective heat transfer in pressure-driven flow along a circular pipe or tube with constant heat flux. Superhydrophobicity here refers to the presence of adiabatic no-shear zones in an otherwise solid no-slip boundary. Adding such adiabatic no-shear zones reduces not only hydrodynamic friction, leading to greater fluid volume fluxes for a given pressure gradient, but also reduces the solid surface area through which heat enters the fluid. This leads to a delicate trade-off between competing mechanisms so that the net effect on convective heat transfer along the pipe, as typically measured by a Nusselt number, is not obvious. Existing evidence in the literature suggests that superhydrophobicity always decreases the Nusselt number, and therefore compromises the net heat transfer. In this theoretical study, we confirm this to be generally true but, significantly, we identify a situation where the opposite occurs and the Nusselt number increases thereby enhancing convective heat transfer along the pipe.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics