Affiliation:
1. Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003;
Abstract
This review discusses the use of the combination of surface roughness and hydrophobicity for engineering large slip at the fluid-solid interface. These superhydrophobic surfaces were initially inspired by the unique water-repellent properties of the lotus leaf and can be employed to produce drag reduction in both laminar and turbulent flows, enhance mixing in laminar flows, and amplify diffusion-osmotic flows. We review the current state of experiments, simulations, and theory of flow past superhydrophobic surfaces. In addition, the designs and limitations of these surfaces are discussed, with an eye toward implementing these surfaces in a wide range of applications.
Cited by
974 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献