Life-Cycle Multiomics of Rice Shoots Reveals Growth Stage–Specific Effects of Drought Stress and Time–Lag Drought Responses

Author:

Soma Fumiyuki1,Kitomi Yuka1,Kawakatsu Taiji2ORCID,Uga Yusaku1ORCID

Affiliation:

1. Institute of Crop Science, National Agriculture and Food Research Organization , 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8518 Japan

2. Institute of Agrobiological Sciences, National Agriculture and Food Research Organization , 3-1-3 Kan-non-dai, Tsukuba, Ibaraki, 305-8604 Japan

Abstract

Abstract Field-grown rice plants are exposed to various stresses at different stages of their life cycle, but little is known about the effects of stage-specific stresses on phenomes and transcriptomes. In this study, we performed integrated time-course multiomics on rice at 3-d intervals from seedling to heading stage under six drought conditions in a well-controlled growth chamber. Drought stress at seedling and reproductive stages reduced yield performance by reducing seed number and setting rate, respectively. High temporal resolution analysis revealed that drought response occurred in two steps: a rapid response via the abscisic acid (ABA) signaling pathway and a slightly delayed DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN (DREB) pathway, allowing plants to respond flexibly to deteriorating soil water conditions. Our long-term time-course multiomics showed that temporary drought stress delayed flowering due to prolonged expression of the flowering repressor gene GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (Ghd7) and delayed expression of the florigen genes HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Our life-cycle multiomics dataset on rice shoots under drought conditions provides a valuable resource for further functional genomic studies to improve crop resilience to drought stress.

Funder

Bio-oriented Technology Research Advancement Institution

Japan Science and Technology Corporation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3