Target Landscape of Conserved Plant MicroRNAs and the Complexities of Their Ancient MicroRNA-Binding Sites

Author:

Wong Gigi Y1,Millar Anthony A1ORCID

Affiliation:

1. Division of Plant Science, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia

Abstract

Abstract In plants, microRNA (miRNA)—target interactions (MTIs) require high complementarity, a feature from which bioinformatic programs have predicted numerous and diverse targets for any given miRNA, promoting the idea of complex miRNA networks. Opposing this is a hypothesis of constrained miRNA specificity, in which functional MTIs are restricted to the few targets whose required expression output is compatible with the expression of the miRNA. To explore these opposing views, the bioinformatic pipeline Targets Ranked Using Experimental Evidence was applied to strongly conserved miRNAs to identity their high-evidence (HE) targets across species. For each miRNA family, HE targets predominantly consisted of homologs from one conserved target gene family (primary family). These primary families corresponded to the known canonical miRNA–target families, validating the approach. Very few additional HE target families were identified (secondary family), and if so, they were likely functionally related to the primary family. Many primary target families contained highly conserved nucleotide sequences flanking their miRNA-binding sites that were enriched in HE homologs across species. A number of these flanking sequences are predicted to form conserved RNA secondary structures that preferentially base pair with the miRNA-binding site, implying that these sites are highly structured. Our findings support a target landscape view that is dominated by the conserved primary target families, with a minority of either secondary target families or non-conserved targets. This is consistent with the constrained hypothesis of functional miRNA specificity, which potentially in part is being facilitated by features beyond complementarity.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3