Cross-Species Metabolomic Analyses in the Brassicaceae Reveals Common Responses to Ultraviolet-B Exposure

Author:

Jing Yue1,Watanabe Mutsumi2ORCID,Aarabi Fayezeh1ORCID,Fernie Alisdair R1ORCID,Borghi Monica3ORCID,Tohge Takayuki12ORCID

Affiliation:

1. Max-Planck Institute for Molecular Plant Physiology, Central Metabolism , Am Mühlenberg 1, Potsdam-Golm D-14476, Germany

2. Division of Biological Science, Nara Institute of Science and Technology (NAIST) , Ikoma, 630-0192 Japan

3. Department of Biology, Utah State University , 5305 Old Main Hill, Logan, UT 84321-5305, USA

Abstract

Abstract Exposure to UV-B radiation, an intrinsic component of solar light, is detrimental to all living organisms as chromophore units of DNA, RNA and proteins readily absorb high-energy photons. Indirect damage to the same molecules and lipids is mediated by elevated reactive oxygen species (ROS) levels, a side effect of exposure to UV-B stress. To protect themselves from UV-B radiation, plants produce phytochemical sunscreens, among which flavonoids have shown to be particularly effective. The core aglycone of flavonoid molecules is subjected to chemical decoration, such as glycosylation and acylation, further improving sunscreen properties. In particular, acylation, which adds a phenolic ring to flavonoid molecules, enhances the spectral absorption of UV-A and UV-B rays, providing to this class of compounds exceptional shielding power. In this study, we comprehensively analyzed the responses to UV-B radiation in four Brassicaceae species, including Arabidopsis thaliana, Brassica napus, Brassica oleracea, and Brassica rapa. Our study revealed a complete reprogramming of the central metabolic pathway in response to UV-B radiation characterized by increased production of functional precursors of specialized metabolites with UV-B shielding properties, indicating a targeted effort of plant metabolism to provide increased protection. The analysis of specialized metabolites and transcripts revealed the activation of the phenylpropanoid–acetate pathway, leading to the production of specific classes of flavonoids and a cross-species increase in phenylacylated-flavonoid glucosides with synapoyl glycoside decorations. Interestingly, our analysis also revealed that acyltransferase genes of the class of serine carboxypeptidase-like (SCPLs) proteins are costitutively expressed, but downregulated in response to UV-B radiation, possibly independently of the ELONGATED HYPOCOTYL 5 (HY5) signaling pathway.

Funder

Japanese Society for the Promotion of the Sciences

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3