Bayesian adaptive model selection design for optimal biological dose finding in phase I/II clinical trials

Author:

Lin Ruitao1ORCID,Yin Guosheng2,Shi Haolun3

Affiliation:

1. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA

2. Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China

3. Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada

Abstract

Summary Identification of the optimal dose presents a major challenge in drug development with molecularly targeted agents, immunotherapy, as well as chimeric antigen receptor T-cell treatments. By casting dose finding as a Bayesian model selection problem, we propose an adaptive design by simultaneously incorporating the toxicity and efficacy outcomes to select the optimal biological dose (OBD) in phase I/II clinical trials. Without imposing any parametric assumption or shape constraint on the underlying dose–response curves, we specify curve-free models for both the toxicity and efficacy endpoints to determine the OBD. By integrating the observed data across all dose levels, the proposed design is coherent in dose assignment and thus greatly enhances efficiency and accuracy in pinning down the right dose. Not only does our design possess a completely new yet flexible dose-finding framework, but it also has satisfactory and robust performance as demonstrated by extensive simulation studies. In addition, we show that our design enjoys desirable coherence properties, while most of existing phase I/II designs do not. We further extend the design to accommodate late-onset outcomes which are common in immunotherapy. The proposed design is exemplified with a phase I/II clinical trial in chronic lymphocytic leukemia.

Funder

National Cancer Institute

Research Grants Council of Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3