Overcoming the impacts of two-step batch effect correction on gene expression estimation and inference

Author:

Li Tenglong1,Zhang Yuqing2,Patil Prasad3,Johnson W Evan4

Affiliation:

1. Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, PRC

2. Clinical Bioinformatics, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA 94404

3. Department of Biostatistics, School of Public Health, 801 Massachusetts Ave. Boston, MA 02118, USA

4. Division of Computational Biomedicine, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA and Department of Biostatistics, School of Public Health, 801 Massachusetts Ave. Boston, MA 02118, USA

Abstract

Summary Nonignorable technical variation is commonly observed across data from multiple experimental runs, platforms, or studies. These so-called batch effects can lead to difficulty in merging data from multiple sources, as they can severely bias the outcome of the analysis. Many groups have developed approaches for removing batch effects from data, usually by accommodating batch variables into the analysis (one-step correction) or by preprocessing the data prior to the formal or final analysis (two-step correction). One-step correction is often desirable due it its simplicity, but its flexibility is limited and it can be difficult to include batch variables uniformly when an analysis has multiple stages. Two-step correction allows for richer models of batch mean and variance. However, prior investigation has indicated that two-step correction can lead to incorrect statistical inference in downstream analysis. Generally speaking, two-step approaches introduce a correlation structure in the corrected data, which, if ignored, may lead to either exaggerated or diminished significance in downstream applications such as differential expression analysis. Here, we provide more intuitive and more formal evaluations of the impacts of two-step batch correction compared to existing literature. We demonstrate that the undesired impacts of two-step correction (exaggerated or diminished significance) depend on both the nature of the study design and the batch effects. We also provide strategies for overcoming these negative impacts in downstream analyses using the estimated correlation matrix of the corrected data. We compare the results of our proposed workflow with the results from other published one-step and two-step methods and show that our methods lead to more consistent false discovery controls and power of detection across a variety of batch effect scenarios. Software for our method is available through GitHub (https://github.com/jtleek/sva-devel) and will be available in future versions of the $\texttt{sva}$ R package in the Bioconductor project (https://bioconductor.org/packages/release/bioc/html/sva.html).

Funder

National Institutes of Health

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3