BatMan: Mitigating Batch Effects Via Stratification for Survival Outcome Prediction

Author:

Ni Ai1ORCID,Liu Mengling2ORCID,Qin Li-Xuan3ORCID

Affiliation:

1. Division of Biostatistics, College of Public Health, Ohio State University, Columbus, OH

2. Department of Population Health, New York University, New York, NY

3. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY

Abstract

Reproducible translation of transcriptomics data has been hampered by the ubiquitous presence of batch effects. Statistical methods for managing batch effects were initially developed in the setting of sample group comparison and later borrowed for other settings such as survival outcome prediction. The most notable such method is ComBat, which adjusts for batches by including it as a covariate alongside sample groups in a linear regression. In survival prediction, however, ComBat is used without definable groups for survival outcome and is done sequentially with survival regression for a potentially batch‐confounded outcome. To address these issues, we propose a new method called BATch MitigAtion via stratificatioN (BatMan). It adjusts batches as strata in survival regression and uses variable selection methods such as the regularized regression to handle high dimensionality. We assess the performance of BatMan in comparison with ComBat, each used either alone or in conjunction with data normalization, in a resampling-based simulation study under various levels of predictive signal strength and patterns of batch-outcome association. Our simulations show that (1) BatMan outperforms ComBat in nearly all scenarios when there are batch effects in the data and (2) their performance can be worsened by the addition of data normalization. We further evaluate them using microRNA data for ovarian cancer from the Cancer Genome Atlas and find that BatMan outforms ComBat while the addition of data normalization worsens the prediction. Our study thus shows the advantage of BatMan and raises caution about the use of data normalization in the context of developing survival prediction models. The BatMan method and the simulation tool for performance assessment are implemented in R and publicly available at LXQin/PRECISION.survival—GitHub .

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3