ConvSCCS: convolutional self-controlled case series model for lagged adverse event detection

Author:

Morel Maryan1,Bacry Emmanuel2,Gaïffas Stéphane3,Guilloux Agathe4,Leroy Fanny5

Affiliation:

1. CMAP Ecole Polytechnique, 91128 Palaiseau Cedex, France

2. CMAP Ecole Polytechnique, 91128 Palaiseau Cedex, France and CEREMADE Université Paris-Dauphine, PSL, 75765 Paris Cedex 16, France

3. LPSM, University Paris Diderot, 75013 Paris, France

4. LAMME, Univ. Evry, CNRS, Université Paris-Saclay, 91025 Evry, France

5. Caisse Nationale de l’Assurance Maladie, 75986 Paris Cedex 20, France

Abstract

Summary With the increased availability of large electronic health records databases comes the chance of enhancing health risks screening. Most post-marketing detection of adverse drug reaction (ADR) relies on physicians’ spontaneous reports, leading to under-reporting. To take up this challenge, we develop a scalable model to estimate the effect of multiple longitudinal features (drug exposures) on a rare longitudinal outcome. Our procedure is based on a conditional Poisson regression model also known as self-controlled case series (SCCS). To overcome the need of precise risk periods specification, we model the intensity of outcomes using a convolution between exposures and step functions, which are penalized using a combination of group-Lasso and total-variation. Up to our knowledge, this is the first SCCS model with flexible intensity able to handle multiple longitudinal features in a single model. We show that this approach improves the state-of-the-art in terms of mean absolute error and computation time for the estimation of relative risks on simulated data. We apply this method on an ADR detection problem, using a cohort of diabetic patients extracted from the large French national health insurance database (SNIIRAM), a claims database containing medical reimbursements of more than 53 million people. This work has been done in the context of a research partnership between Ecole Polytechnique and CNAMTS (in charge of SNIIRAM).

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3