Fast Lasso method for large-scale and ultrahigh-dimensional Cox model with applications to UK Biobank

Author:

Li Ruilin1,Chang Christopher2,Justesen Johanne M3,Tanigawa Yosuke3,Qiang Junyang3,Hastie Trevor3,Rivas Manuel A3,Tibshirani Robert3

Affiliation:

1. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA

2. Grail, Inc., Menlo Park 94025, USA

3. Department of Statistics and Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA

Abstract

Summary We develop a scalable and highly efficient algorithm to fit a Cox proportional hazard model by maximizing the $L^1$-regularized (Lasso) partial likelihood function, based on the Batch Screening Iterative Lasso (BASIL) method developed in Qian and others (2019). Our algorithm is particularly suitable for large-scale and high-dimensional data that do not fit in the memory. The output of our algorithm is the full Lasso path, the parameter estimates at all predefined regularization parameters, as well as their validation accuracy measured using the concordance index (C-index) or the validation deviance. To demonstrate the effectiveness of our algorithm, we analyze a large genotype-survival time dataset across 306 disease outcomes from the UK Biobank (Sudlow and others, 2015). We provide a publicly available implementation of the proposed approach for genetics data on top of the PLINK2 package and name it snpnet-Cox.

Funder

Funai Foundation for Information Technology and the Stanford University School of Medicine to Y.T

National Institutes of Health

NSF

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability

Reference29 articles.

1. Phenome-wide burden of copy number variation in UK Biobank;Aguirre,;American Journal of Human Genetics,2019

2. Residuals for relative risk regression;Barlow,;Biometrika,1988

3. Inherited disorders of bilirubin metabolism;Bosma,;Journal of Hepatology,2003

4. Covariance analysis of censored survival data;Breslow,;Biometrics,1974

5. The UK Biobank resource with deep phenotyping and genomic data;Bycroft,;Nature,2018

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3