A Maximum Dose Bioassay to Assess Efficacy of Key Insecticides Against Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae)

Author:

Rossitto De Marchi Bruno1ORCID,Smith Hugh1,Turechek William2,Riley David3

Affiliation:

1. Gulf Coast Research and Education Center, University of Florida, Wimauma, FL

2. U.S. Horticultural Research Laboratory, USDA, ARS, Fort Pierce, FL

3. Department of Entomology, University of Georgia Tifton Campus, Tifton, GA

Abstract

Abstract The whitefly, Bemisia tabaci MEAM1 Gennadius causes serious losses to Florida vegetable and ornamental production. In 2019, a maximum dose bioassay was administered to 20 field populations of B. tabaci MEAM1 collected from various economic and weed hosts across south Florida to assess insecticide efficacy. The maximum dose bioassay tests the top labeled rate of the insecticide against B. tabaci adults on treated cotton leaves in a Petri dish over a 72-h period. A susceptible laboratory colony of B. tabaci MEAM1 and a colony of B. tabaci MED were also tested. Survival over 72 h was used to produce an area under the maximum dose curve, which was used to compare insecticide effects on different populations. Overall, imidacloprid demonstrated the poorest efficacy, dinotefuran and flupyradifurone were the most effective, and bifenthrin, cyantraniliprole, and thiamethoxam tended to group together, providing intermediate control. Across populations tested, survival in whitefly adults treated with dinotefuran was 50% lower than whiteflies treated with imidacloprid, about 33% lower than whiteflies treated with thiamethoxam, bifenthrin, and cyantraniliprole, and 10% lower than whiteflies treated with flupyradifurone. Efficacy of bifenthrin was less than imidacloprid on some populations, particularly from the Homestead area. Imidacloprid and thiamethoxam had no effect on mortality of the MED population when it was tested after 22 mo in culture without exposure to insecticides, although 7 mo later, these materials resulted in some mortality for the MED population.

Funder

USDA-Specialty Crops Research Initiative

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3