Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava

Author:

Caspary Ruben1ORCID,Wosula Everlyne N.2ORCID,Issa Khamis A.2ORCID,Amour Massoud2,Legg James P.2ORCID

Affiliation:

1. Faculty of Natural Sciences, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Steinknöck 11, 91054 Erlangen, Germany

2. International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania

Abstract

The cassava whitefly Bemisia tabaci causes damage in cassava through the feeding and vectoring of plant viruses that cause cassava mosaic and cassava brown streak diseases. This study sought to explore the efficacy of cutting dipping in flupyradifurone for whitefly control and the impact of the mode of application on whitefly parasitism under farmer field conditions. The insecticide treatment significantly reduced adult whiteflies by 41%, nymphs by 64%, and cassava mosaic disease (CMD) incidence by 16% and increased root yield by 49%. The whitefly parasitism rate by Encarsia spp. parasitoids was 27.3 and 21.1%, while Eretmocerus spp. had 26.7 and 18.0% in control and flupyradifurone, respectively, and these differences were not significant. Electropenetrography recordings of whitefly feeding behaviour on flupyradifurone-treated plants showed significantly reduced probing activity and a delay in reaching the phloem as compared to the control. The findings from this study demonstrated that cassava cutting dipping in flupyradifurone significantly reduces whitefly numbers and cassava mosaic disease incidence, thus contributing to a significant root yield increase in cassava. Flupyradifurone applied through cutting dips does not significantly impact parasitism rates in cassava fields. Routine monitoring of parasitoids and predators in insecticide-treated versus control fields should be emphasized to determine the impact of pesticides on these beneficial non-target organisms.

Funder

CGIAR Initiative on Plant Health and Rapid Response to Protect Food Security and Livelihoods (Plant Health Initiative).

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3