Opportunities and limitations of thinning to increase resistance and resilience of trees and forests to global change

Author:

Moreau Guillaume12,Chagnon Catherine1,Achim Alexis1,Caspersen John2,D’Orangeville Loïc3,Sánchez-Pinillos Martina34,Thiffault Nelson5ORCID

Affiliation:

1. Département des sciences du bois et de la forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V 0A6, Canada

2. Daniels Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3, Canada

3. Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, NB E3B 5A3, Canada

4. Centre for Forest Research, Université du Québec à Montréal, Université du Québec à Montréal, P.O. Box 8888, Stn. Centre-Ville, Montreal, QC H3C 3P8, Canada

5. Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada

Abstract

Abstract We reviewed recent literature to identify the positive and negative effects of thinning on both stand- and tree-level resistance and resilience to four stressors that are expected to increase in frequency and/or severity due to global change: (1) drought, (2) fire, (3) insects and pathogens, and (4) wind. There is strong evidence that thinning, particularly heavy thinning, reduces the impact of drought and also the risk and severity of fire when harvest slash is burned or removed. Thinning also increases the growth and vigor of residual trees, making them less susceptible to eruptive insects and pathogens, while targeted removal of host species, susceptible individuals and infected trees can slow the spread of outbreaks. However, the evidence that thinning has consistent positive effects is limited to a few insects and pathogens, and negative effects on root rot infection severity were also reported. At this point, our review reveals insufficient evidence from rigorous experiments to draw general conclusions. Although thinning initially increases the risk of windthrow, there is good evidence that thinning young stands reduces the long-term risk by promoting the development of structural roots and favouring the acclimation of trees to high wind loads. While our review suggests that thinning should not be promoted as a tool that will universally increase the resistance and resilience of forests, current evidence suggests that thinning could still be an effective tool to reduce forest vulnerability to several stressors, creating a window of opportunity to implement longer term adaptive management strategies such as assisted migration. We highlight knowledge gaps that should be targeted by future research to assess the potential contribution of thinning to adaptive forest management. One of these gaps is that studies from boreal and tropical regions are drastically underrepresented, with almost no studies conducted in Asia and the southern hemisphere. Empirical evidence from these regions is urgently needed to allow broader-scale conclusions.

Funder

Canadian Wood Fibre Centre of Natural Resources Canada

Publisher

Oxford University Press (OUP)

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3