Multidecadal vegetation transformations of a New Mexico ponderosa pine landscape after severe fires and aerial seeding

Author:

Wion Andreas P.1ORCID,Stevens Jens T.2ORCID,Beeley Kay3,Oertel Rebecca1,Margolis Ellis Q.1ORCID,Allen Craig D.4

Affiliation:

1. U.S. Geological Survey, Fort Collins Science Center New Mexico Landscapes Field Station Santa Fe New Mexico USA

2. School of Environmental and Forest Science University of Washington Seattle Washington USA

3. National Park Service Bandelier National Monument Los Alamos New Mexico USA

4. Department of Geography and Environmental Studies University of New Mexico Albuquerque New Mexico USA

Abstract

AbstractWildfires and climate change increasingly are transforming vegetation composition and structure, and postfire management may have long‐lasting effects on ecosystem reorganization. Postfire aerial seeding treatments are commonly used to reduce runoff and soil erosion, but little is known about how seeding treatments affect native vegetation recovery over long periods of time, particularly in type‐converted forests that have been dramatically transformed by the effects of repeated, high‐severity fire. In this study, we analyze and report on a rare long‐term (23‐year) dataset that documents vegetation dynamics following a 1996 post‐fire aerial seeding treatment and a subsequent 2011 high‐severity reburn in a dry conifer landscape of northern New Mexico, USA. Repeated surveys between 1997 and 2019 of 49 permanent transects were analyzed for differences in vegetation cover, richness, and diversity between seeded and unseeded areas, and to characterize the development of seeded and unseeded vegetation communities through time and across gradients of burn severity, elevation, and soil‐available water capacity. Seeded plots showed no significant difference in bare ground cover during the initial years postfire relative to unseeded plots. Postfire seeding led to a clear and sustained divergence in herbaceous community composition. Seeded plots had a much higher cover of non‐native graminoids, primarily Bromus inermis, a likely contaminant in the seed mix. High‐severity reburning of all plots in 2011 reduced native graminoid cover by half at seeded plots compared with both prefire levels and with plots that were unseeded following the initial 1996 fire. In addition, higher fire severity was associated with increased non‐native graminoid cover and reduced native graminoid cover. This study documents fire‐driven ecosystem transformation from conifer forest into a shrub‐and‐grass‐dominated system, reinforced by aerial seeding of grasses and high‐severity reburning. This unique long‐term dataset illustrates that post‐fire seeding carries significant risks of unwanted non‐native species invasions that persist through subsequent fires—thus alternative postfire management actions merit consideration to better support native ecosystem resilience given emergent climate change and increasing disturbance. This study also highlights the importance of long‐term monitoring of postfire vegetation dynamics, as short‐term assessments miss key elements of complex ecosystem responses to fire and postfire management actions.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3