sgsR: a structurally guided sampling toolbox for LiDAR-based forest inventories

Author:

Goodbody Tristan R H1,Coops Nicholas C1,Queinnec Martin1,White Joanne C2,Tompalski Piotr2,Hudak Andrew T3,Auty David4,Valbuena Ruben5,LeBoeuf Antoine6,Sinclair Ian7,McCartney Grant8,Prieur Jean-Francois9,Woods Murray E7

Affiliation:

1. University of British Columbia Faculty of Forestry, Department of Forest Resources Management, , 2424 Main Mall, Vancouver, BC V6T 1Z4 , Canada

2. Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada , 506 West Burnside Road, Victoria, BC V8Z 1M5 , Canada

3. Rocky Mountain Research Station , USDA Forest Service, Moscow, ID 83843 , USA

4. School of Forestry, Northern Arizona University , 200 East Pine Knoll Drive, Flagstaff, AZ 86011-5018 , USA

5. Department of Forest Resource Management, Swedish University of Agricultural Sciences, Division of Forest Remote Sensing, Umeå, SE-901 83, Sweden

6. Ministère des Forêts, de la Faune et des Parcs , 5700, 4ième Avenue Ouest, local A 108 Québec, QC G1H 6R1 , Canada

7. Ontario Ministry of Natural Resources and Forestry , 1235 Queen St E, Sault Ste Marie, ON P6A 2E5 , Canada

8. Forsite Consultants Ltd , 330-42 St SW, Salmon Arm, BC V1E 4R1 , Canada

9. Centre d’Applications et de Recherches en Télédétection (CARTEL) Département de Géomatique Appliquée Faculté de Lettres et de Sciences humaines, , 2500 Bd de l'Université, Sherbrooke, Quebec J1K 2R1 , Canada

Abstract

Abstract Establishing field inventories can be labor intensive, logistically challenging and expensive. Optimizing a sample to derive accurate forest attribute predictions is a key management-level inventory objective. Traditional sampling designs involving pre-defined, interpreted strata could result in poor selection of within-strata sampling intensities, leading to inaccurate estimates of forest structural variables. The use of airborne laser scanning (ALS) data as an applied forest inventory tool continues to improve understanding of the composition and spatial distribution of vegetation structure across forested landscapes. The increased availability of wall-to-wall ALS data is promoting the concept of structurally guided sampling (SGS), where ALS metrics are used as an auxiliary data source driving stratification and sampling within management-level forest inventories. In this manuscript, we present an open-source R package named sgsR that provides a robust toolbox for implementing various SGS approaches. The goal of this package is to provide a toolkit to facilitate better optimized allocation of sample units and sample size, as well as to assess and augment existing plot networks by accounting for current forest structural conditions. Here, we first provide justification for SGS approaches and the creation of the sgsR toolbox. We then briefly describe key functions and workflows the package offers and provide two reproducible examples. Avenues to implement SGS protocols according to auxiliary data needs are presented.

Funder

Canadian Wood Fibre Centre's Forest Innovation Program

Publisher

Oxford University Press (OUP)

Subject

Forestry

Reference71 articles.

1. Lidar-distributional parameters on a per-segment basis;Aardt;For. Sci.,2006

2. Ecologically-based metrics for assessing structure in developing area-based, enhanced forest inventories from LiDAR;Ayrey;Can. J. Remote. Sens.,2019

3. The enhanced forest inventory and analysis program – national sampling design and estimation procedures;Bechtold,2005

4. Sampling Spatial Units for Agricultural Surveys

5. The value of timber inventory information for management planning;Borders;Can. J. For. Res.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3