Active protein ubiquitination regulates xylem vessel functionality

Author:

Phookaew Pawittra1ORCID,Ma Ya2ORCID,Suzuki Takaomi1ORCID,Stolze Sara Christina3ORCID,Harzen Anne3ORCID,Sano Ryosuke1ORCID,Nakagami Hirofumi3ORCID,Demura Taku14ORCID,Ohtani Misato124ORCID

Affiliation:

1. Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology , Ikoma 630-0192 , Japan

2. Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa 277-8562 , Japan

3. Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research , Cologne 50829 , Germany

4. Center for Sustainable Resource Science , RIKEN, Yokohama 230-0045 , Japan

Abstract

Abstract Xylem vessels function in the long-distance conduction of water in land plants. The NAC transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). We previously isolated suppressor of ectopic xylem vessel cell differentiation induced by VND7 (seiv) mutants. Here, we report that the responsible genes for seiv3, seiv4, seiv6, and seiv9 are protein ubiquitination-related genes encoding PLANT U-BOX46 (PUB46), an uncharacterized F-BOX protein (FBX), PUB36, and UBIQUITIN-SPECIFIC PROTEASE1 (UBP1), respectively. We also found decreased expression of genes downstream of VND7 and abnormal xylem transport activity in the seiv mutants. Upon VND7 induction, ubiquitination levels from 492 and 180 protein groups were upregulated and downregulated, respectively. VND7 induction resulted in the ubiquitination of proteins for cell wall biosynthesis and protein transport, whereas such active protein ubiquitination did not occur in the seiv mutants. We detected the ubiquitination of three lysine residues in VND7: K94, K105, and K260. Substituting K94 with arginine significantly decreased the transactivation activity of VND7, suggesting that the ubiquitination of K94 is crucial for regulating VND7 activity. Our findings highlight the crucial roles of target protein ubiquitination in regulating xylem vessel activity.

Funder

MEXT KAKENHI

JSPS KAKENHI

JST ERATO

JST ASPIRE

Asahi Glass Foundation

G-7 Scholarship Foundation

University of Tokyo

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3