Affiliation:
1. Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
2. Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
Abstract
Abstract
Vascular plants have two types of water-conducting cells, xylem vessel cells (in angiosperms) and tracheid cells (in ferns and gymnosperms). These cells are commonly characterized by secondary cell wall (SCW) formation and programmed cell death (PCD), which increase the efficiency of water conduction. The differentiation of xylem vessel cells is regulated by a set of NAC (NAM, ATAF1/2 and CUC2) transcription factors, called the VASCULAR-RELATED NAC-DOMAIN (VND) family, in Arabidopsis thaliana Linne. The VNDs regulate the transcriptional induction of genes required for SCW formation and PCD. However, information on the transcriptional regulation of tracheid cell differentiation is still limited. Here, we performed functional analysis of loblolly pine (Pinus taeda Linne) VND homologs (PtaVNS, for VND, NST/SND, SMB-related protein). We identified five PtaVNS genes in the loblolly pine genome, and four of these PtaVNS genes were highly expressed in tissues with tracheid cells, such as shoot apices and developing xylem. Transient overexpression of PtaVNS genes induced xylem vessel cell-like patterning of SCW deposition in tobacco (Nicotiana benthamiana Domin) leaves, and up-regulated the promoter activities of loblolly pine genes homologous to SCW-related MYB transcription factor genes and cellulose synthase genes, as well as to cysteine protease genes for PCD. Collectively, our data indicated that PtaVNS proteins possess transcriptional activity to induce the molecular programs required for tracheid formation, i.e., SCW formation and PCD. Moreover, these findings suggest that the VNS–MYB-based transcriptional network regulating water-conducting cell differentiation in angiosperm and moss plants is conserved in gymnosperms.
Funder
Exploratory Research for Advanced Technology
Ministry of Education, Culture, Sports, Science, and Technology of Japan KAKENHI
Japan Society for the Promotion of Science KAKENHI
Publisher
Oxford University Press (OUP)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献