Involvement of VNS NAC-domain transcription factors in tracheid formation in Pinus taeda

Author:

Akiyoshi Nobuhiro1,Nakano Yoshimi1,Sano Ryosuke1,Kunigita Yusuke1,Ohtani Misato12ORCID,Demura Taku1ORCID

Affiliation:

1. Graduate School of Science and Technology, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan

2. Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan

Abstract

Abstract Vascular plants have two types of water-conducting cells, xylem vessel cells (in angiosperms) and tracheid cells (in ferns and gymnosperms). These cells are commonly characterized by secondary cell wall (SCW) formation and programmed cell death (PCD), which increase the efficiency of water conduction. The differentiation of xylem vessel cells is regulated by a set of NAC (NAM, ATAF1/2 and CUC2) transcription factors, called the VASCULAR-RELATED NAC-DOMAIN (VND) family, in Arabidopsis thaliana Linne. The VNDs regulate the transcriptional induction of genes required for SCW formation and PCD. However, information on the transcriptional regulation of tracheid cell differentiation is still limited. Here, we performed functional analysis of loblolly pine (Pinus taeda Linne) VND homologs (PtaVNS, for VND, NST/SND, SMB-related protein). We identified five PtaVNS genes in the loblolly pine genome, and four of these PtaVNS genes were highly expressed in tissues with tracheid cells, such as shoot apices and developing xylem. Transient overexpression of PtaVNS genes induced xylem vessel cell-like patterning of SCW deposition in tobacco (Nicotiana benthamiana Domin) leaves, and up-regulated the promoter activities of loblolly pine genes homologous to SCW-related MYB transcription factor genes and cellulose synthase genes, as well as to cysteine protease genes for PCD. Collectively, our data indicated that PtaVNS proteins possess transcriptional activity to induce the molecular programs required for tracheid formation, i.e., SCW formation and PCD. Moreover, these findings suggest that the VNS–MYB-based transcriptional network regulating water-conducting cell differentiation in angiosperm and moss plants is conserved in gymnosperms.

Funder

Exploratory Research for Advanced Technology

Ministry of Education, Culture, Sports, Science, and Technology of Japan KAKENHI

Japan Society for the Promotion of Science KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3