Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance

Author:

Ma Aifang1ORCID,Zhang Dingpeng12ORCID,Wang Guangxing1ORCID,Wang Kai13ORCID,Li Zhen1ORCID,Gao Yuanhui1ORCID,Li Hengchang1ORCID,Bian Chao14ORCID,Cheng Jinkui1ORCID,Han Yinan1ORCID,Yang Shuhua1ORCID,Gong Zhizhong15ORCID,Qi Junsheng1ORCID

Affiliation:

1. State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China

2. Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA

3. State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China

4. Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA

5. College of Life Science, Hebei University, Baoding 071002, China

Abstract

Abstract Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.

Funder

National Key Research and Development Program of China

Major transgenic project Program of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3