Cucumber STACHYOSE SYNTHASE is regulated by its cis-antisense RNA asCsSTS to balance source–sink carbon partitioning

Author:

Dai Haibo1ORCID,Zhang Wenyan1ORCID,Hua Bing1,Zhu Zihui1ORCID,Zhang Jinji1ORCID,Zhang Zhiping1ORCID,Miao Minmin123ORCID

Affiliation:

1. College of Horticulture and Landscape, Yangzhou University , Yangzhou, Jiangsu Province , 225009, China

2. Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province , 225009, China

3. Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University , Yangzhou, Jiangsu Province , 225009, China

Abstract

Abstract Photosynthate partitioning between source and sink is a key determinant of crop yield. In contrast to sucrose-transporting plants, cucumber (Cucumis sativus) plants mainly transport stachyose and stachyose synthase (CsSTS) synthesizes stachyose in the vasculature for loading. Therefore, CsSTS is considered a key regulator of carbon partitioning. We found that CsSTS expression and CsSTS enzyme activity were upregulated in the vasculature and downregulated in mesophyll tissues at fruiting. In situ hybridization and tissue enrichment experiments revealed that a cis-natural antisense noncoding transcript of CsSTS, named asCsSTS, is mainly expressed in mesophyll tissues. In vitro overexpression (OE), RNA interference (RNAi), and dual luciferase reporter experiments indicated that CsSTSs are negatively regulated by asCsSTS. Fluorescence in situ hybridization revealed that asCsSTS transcript localized in leaf cytoplasm, indicating that the regulation of CsSTS by asCsSTS is a posttranscriptional process. Further investigation revealed that this regulation occurred by reducing CsSTS transcript stability through a DICER-like protein-mediated pathway. Chemically induced OE and RNAi of asCsSTS led to promotion or inhibition, respectively, of assimilate export from leaves and altered fruit growth rates. Our results suggest that the regulation of CsSTSs between the mesophyll and vasculature reduces sugar storage in mesophyll tissue and promotes assimilate export from the leaf when the plant carries fruit.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3