FTSH PROTEASE 3 facilitates Complex I degradation through a direct interaction with the Complex I subunit PSST

Author:

Ghifari Abi S1ORCID,Ivanova Aneta1ORCID,Berkowitz Oliver2ORCID,Whelan James3ORCID,Murcha Monika W1ORCID

Affiliation:

1. School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia , Perth, WA 6009 , Australia

2. Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University , Bundoora, VIC 3086 , Australia

3. College of Life Science, Zhejiang University , Hangzhou, Zhejiang 310058 , PR China

Abstract

Abstract Complex I (CI) (NADH dehydrogenase), the largest complex involved in mitochondrial oxidative phosphorylation, is composed of nuclear- and mitochondrial-encoded subunits. CI assembly occurs via the sequential addition of subdomains and modules. As CI is prone to oxidative damage, its subunits continually undergo proteolysis and turnover. We describe the mechanism by which CI abundance is regulated in a CI-deficient Arabidopsis thaliana mutant. Using a forward genetic approach, we determined that the CI Q-module domain subunit PSST interacts with FTSH PROTEASE 3 (FTSH3) to mediate the disassembly of the matrix arm domain for proteolysis and turnover as a means of protein quality control. We demonstrated the direct interaction of FTSH3 with PSST and identified the amino acid residues required for this interaction. The ATPase function of FTSH3, rather than its proteolytic activity, is required for this interaction, as its mutation was compensated for by a proteolytically inactive form of FTSH3. This study reveals the mechanistic process by which FTSH3 recognizes CI for degradation at amino acid resolution.

Funder

Australian Research Council

ARC Centre of Excellence in Plant Energy Biology

ARC Discovery Project

The University of Western Australia

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3