Time for a drought experiment: Do you know your plants’ water status?

Author:

Juenger Thomas E1ORCID,Verslues Paul E2ORCID

Affiliation:

1. Department of Integrative Biology, University of Texas , Austin, Texas 78712, USA

2. Institute of Plant and Microbial Biology, Academia Sinica , Taipei 11528, Taiwan

Abstract

Abstract Drought stress is an increasing concern because of climate change and increasing demands on water for agriculture. There are still many unknowns about how plants sense and respond to water limitation, including which genes and cellular mechanisms are impactful for ecology and crop improvement in drought-prone environments. A better understanding of plant drought resistance will require integration of several research disciplines. A common set of parameters to describe plant water status and quantify drought severity can enhance data interpretation and research integration across the research disciplines involved in understanding drought resistance and would be especially useful in integrating the flood of genomic data being generated in drought studies. Water potential (ψw) is a physical measure of the free energy status of water that, along with related physiological measurements, allows unambiguous description of plant water status that can apply across various soil types and environmental conditions. ψw and related physiological parameters can be measured with relatively modest investment in equipment and effort. Thus, we propose that increased use of ψw as a fundamental descriptor of plant water status can enhance the insight gained from many drought-related experiments and facilitate data integration and sharing across laboratories and research disciplines.

Funder

Office of Science

U.S. Department of Energy

Human Frontier Science Program

Academia Sinica Investigator Award

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3