The Role of Drought and Temperature Stress in the Regulation of Flowering Time in Annuals and Perennials

Author:

Chen Min1,Zhang Tian-Liang1,Hu Chun-Gen1,Zhang Jin-Zhi1ORCID

Affiliation:

1. National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Plants experience a variety of adverse environments during their vegetative growth and reproductive development, and to ensure that they complete their life cycle successfully, they have evolved specific defense mechanisms to cope with unfavorable environments. Flowering is a vital developmental stage and an important determinant of productivity in the lifetime of plants, which can be vulnerable to multiple abiotic stresses. Exposure to stress during this period can have dramatic effects on flower physiological and morphological development, which may ultimately lead to a substantial loss of yield in seed-producing plants. However, there has been increasing research evidence that diverse abiotic stresses, ranging from drought, low temperature, and heat stress can promote or delay plant flowering. This review focuses on how plants alter developmental direction to balance between survival and productivity under drought and extreme temperature conditions. Starting from the perspective of the functional analysis of key flowering-regulated genes, it is of great help for researchers to quickly gain a deeper understanding of the regulatory effects of abiotic stress on the flowering process, to elucidate the molecular mechanisms, and to improve the regulatory network of abiotic-stress-induced flowering. Additionally, the important agronomic significance of the interaction between abiotic stress and the flowering regulation of perennial plants under climate change conditions is also discussed after summarizing studies on the mechanisms of stress-induced flowering in annual plants. This review aims to clarify the effects of abiotic stresses (mainly drought and temperature) on plant flowering, which are significant for future productivity increase under unfavorable environmental conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3