Deep Learning vs Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening

Author:

Lehman Constance D12ORCID,Mercaldo Sarah12,Lamb Leslie R12,King Tari A34,Ellisen Leif W15,Specht Michelle13,Tamimi Rulla M6ORCID

Affiliation:

1. Massachusetts General Hospital , Boston, MA, USA

2. Harvard Medical School, Radiology , Boston, MA, USA

3. Harvard Medical School, Surgery , Boston, MA, USA

4. Dana-Farber/Brigham and Women’s Cancer Center , Boston, MA, USA

5. Harvard Medical School, Medicine , Boston, MA, USA

6. Weill Cornell Medicine, Epidemiology and Population Health Sciences , New York, NY, USA

Abstract

Abstract Background Deep learning breast cancer risk models demonstrate improved accuracy compared with traditional risk models but have not been prospectively tested. We compared the accuracy of a deep learning risk score derived from the patient’s prior mammogram to traditional risk scores to prospectively identify patients with cancer in a cohort due for screening. Methods We collected data on 119 139 bilateral screening mammograms in 57 617 consecutive patients screened at 5 facilities between September 18, 2017, and February 1, 2021. Patient demographics were retrieved from electronic medical records, cancer outcomes determined through regional tumor registry linkage, and comparisons made across risk models using Wilcoxon and Pearson χ2 2-sided tests. Deep learning, Tyrer-Cuzick, and National Cancer Institute Breast Cancer Risk Assessment Tool (NCI BCRAT) risk models were compared with respect to performance metrics and area under the receiver operating characteristic curves. Results Cancers detected per thousand patients screened were higher in patients at increased risk by the deep learning model (8.6, 95% confidence interval [CI] = 7.9 to 9.4) compared with Tyrer-Cuzick (4.4, 95% CI = 3.9 to 4.9) and NCI BCRAT (3.8, 95% CI = 3.3 to 4.3) models (P < .001). Area under the receiver operating characteristic curves of the deep learning model (0.68, 95% CI = 0.66 to 0.70) was higher compared with Tyrer-Cuzick (0.57, 95% CI = 0.54 to 0.60) and NCI BCRAT (0.57, 95% CI = 0.54 to 0.60) models. Simulated screening of the top 50th percentile risk by the deep learning model captured statistically significantly more patients with cancer compared with Tyrer-Cuzick and NCI BCRAT models (P < .001). Conclusions A deep learning model to assess breast cancer risk can support feasible and effective risk-based screening and is superior to traditional models to identify patients destined to develop cancer in large screening cohorts.

Funder

Breast Cancer Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3