Polygenic Breast Cancer Risk for Women Veterans in the Million Veteran Program

Author:

Minnier Jessica123ORCID,Rajeevan Nallakkandi45ORCID,Gao Lina123,Park Byung123ORCID,Pyarajan Saiju67ORCID,Spellman Paul23,Haskell Sally G.89,Brandt Cynthia A.58,Luoh Shiuh-Wen23ORCID,

Affiliation:

1. OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR

2. Knight Cancer Institute, Oregon Health & Science University, Portland, OR

3. VA Portland Health Care System, Portland, OR

4. Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT

5. Yale Center for Medical Informatics (YCMI), Yale School of Medicine, New Haven, CT

6. VA Boston Healthcare System, Boston, MA

7. Department of Medicine, Harvard Medical School, Boston, MA

8. VA Connecticut Healthcare System, West Haven, CT

9. Department of Internal Medicine, Yale School of Medicine, New Haven, CT

Abstract

PURPOSE Accurate breast cancer (BC) risk assessment allows personalized screening and prevention. Prospective validation of prediction models is required before clinical application. Here, we evaluate clinical- and genetic-based BC prediction models in a prospective cohort of women from the Million Veteran Program. MATERIALS AND METHODS Clinical BC risk prediction models were validated in combination with a genetic polygenic risk score of 313 (PRS313) single-nucleotide polymorphisms in genetic females without prior BC diagnosis (n = 35,130, mean age 49 years) with 30% non-Hispanic African ancestry (AA). Clinical risk models tested were Breast and Prostate Cancer Cohort Consortium, literature review, and Breast Cancer Risk Assessment Tool, and implemented with or without PRS313. Prediction accuracy and association with incident breast cancer was evaluated with area under the receiver operating characteristic curve (AUC), hazard ratios, and proportion with high absolute lifetime risk. RESULTS Three hundred thirty-eight participants developed incident breast cancers with a median follow-up of 3.9 years (2.5 cases/1,000 person-years), with 196 incident cases in women of European ancestry and 112 incident cases in AA women. Individualized Coherent Absolute Risk Estimator-literature review in combination with PRS313 had an AUC of 0.708 (95% CI, 0.659 to 0.758) in women with European or non-African ancestries and 0.625 (0.539 to 0.711) in AA women. Breast Cancer Risk Assessment Tool with PRS313 had an AUC of 0.695 (0.62 to 0.729) in European or non-AA and 0.675 (0.626 to 0.723) in AA women. Incorporation of PRS313 with clinical models improved prediction in European but not in AA women. Models estimated up to 9% of European and 18% of AA women with absolute lifetime risk > 20%. CONCLUSION Clinical and genetic BC risk models predict incident BC in a large prospective multiracial cohort; however, more work is needed to improve genetic risk estimation in AA women.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3