The G Protein-Coupled Receptor Latrophilin-2, A Marker for Heart Development, Induces Myocardial Repair After Infarction

Author:

Lee Choon-Soo12,Cho Hyun-Jai3ORCID,Lee Jin-Woo12,Son Hyun Ju12,Lee Jaewon1,Kang Minjun12,Kim Hyo-Soo12ORCID

Affiliation:

1. Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea

2. Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea

3. Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea

Abstract

Abstract Discovering cell–surface markers based on a comprehensive understanding of development is utilized to isolate a particular cell type with high purity for therapeutic purposes. Given that latrophilin-2 (Lphn2) substantially contributes to cardiac differentiation, we examined whether Lphn2 regulates functional significance in heart development and repair. We performed whole-mount immunostaining followed by clearing technique of embryo, RNA sequencing related to Lphn2-knockout (KO) embryo, and in vivo functional analyses of Lphn2+ cells using echocardiography. After immunostaining the cleared embryo sample, Lphn2 was exclusively observed in cardiac cells expressing α-sarcomeric actinin at embryonic days E9.5 and E10.5. Homozygous Lphn2-KO mice were embryonically lethal and showed underdevelopment of the ventricular myocardium. However, Lphn2 was not required to develop vessels, including endothelial cells and smooth muscle cells. For the purpose of cardiac regeneration, we transplanted pluripotent stem cell (PSC)–derived Lphn2+ cells into the infarcted heart. PSC–derived Lphn2+ cells differentiated into cardiomyocytes and regenerated the myocardium when transplanted into the infarcted heart, unlike Lphn2− cells. Transplanted Lphn2+ cells improved left-ventricle systolic function and reduced infarct size. We demonstrated that Lphn2 exhibits potential as a cardiomyogenic marker to facilitate targeted stem cell therapy for heart repair in clinical practice.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3