MAGE genes in the kidney: identification of MAGED2 as upregulated during kidney injury and in stressed tubular cells

Author:

Valiño-Rivas Lara12,Cuarental Leticia12,Agustin Mateo1,Husi Holger34,Cannata-Ortiz Pablo1,Sanz Ana B12,Mischak Harald35,Ortiz Alberto12,Sanchez-Niño Maria Dolores12

Affiliation:

1. Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain

2. Nephrology, REDINREN, Madrid, Spain

3. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK

4. Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK

5. Mosaiques diagnostics GmbH, Hannover, Germany

Abstract

Abstract Background Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. Methods The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. Results Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. Conclusions MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.

Funder

Instituto de Salud Carlos III

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3