MAGED2 Depletion Promotes Stress-Induced Autophagy by Impairing the cAMP/PKA Pathway

Author:

Nasrah Sadiq1,Radi Aline1,Daberkow Johanna K.2ORCID,Hummler Helmut1,Weber Stefanie1,Seaayfan Elie1ORCID,Kömhoff Martin1ORCID

Affiliation:

1. Department of Pediatrics, University Hospital Giessen and Marburg, Philipps University Marburg, 35043 Marburg, Germany

2. Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany

Abstract

Melanoma-associated antigen D2 (MAGED2) plays an essential role in activating the cAMP/PKA pathway under hypoxic conditions, which is crucial for stimulating renal salt reabsorption and thus explaining the transient variant of Bartter’s syndrome. The cAMP/PKA pathway is also known to regulate autophagy, a lysosomal degradation process induced by cellular stress. Previous studies showed that two members of the melanoma-associated antigens MAGE-family inhibit autophagy. To explore the potential role of MAGED2 in stress-induced autophagy, specific MAGED2-siRNA were used in HEK293 cells under physical hypoxia and oxidative stress (cobalt chloride, hypoxia mimetic). Depletion of MAGED2 resulted in reduced p62 levels and upregulation of both the autophagy-related genes (ATG5 and ATG12) as well as the autophagosome marker LC3II compared to control siRNA. The increase in the autophagy markers in MAGED2-depleted cells was further confirmed by leupeptin-based assay which concurred with the highest LC3II accumulation. Likewise, under hypoxia, immunofluorescence in HEK293, HeLa and U2OS cell lines demonstrated a pronounced accumulation of LC3B puncta upon MAGED2 depletion. Moreover, LC3B puncta were absent in human fetal control kidneys but markedly expressed in a fetal kidney from a MAGED2-deficient subject. Induction of autophagy with both physical hypoxia and oxidative stress suggests a potentially general role of MAGED2 under stress conditions. Various other cellular stressors (brefeldin A, tunicamycin, 2-deoxy-D-glucose, and camptothecin) were analyzed, which all induced autophagy in the absence of MAGED2. Forskolin (FSK) inhibited, whereas GNAS Knockdown induced autophagy under hypoxia. In contrast to other MAGE proteins, MAGED2 has an inhibitory role on autophagy only under stress conditions. Hence, a prominent role of MAGED2 in the regulation of autophagy under stress conditions is evident, which may also contribute to impaired fetal renal salt reabsorption by promoting autophagy of salt-transporters in patients with MAGED2 mutation.

Funder

German Research Foundation

Behring Röntgen Foundation

University Medical Center Giessen and Marburg UKGM

Open Access Publication Fund of Philipps-Universität Marburg

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3