Experimental evidence for weakened tree nutrient use and resorption efficiencies under severe drought in a subtropical monsoon forest

Author:

Xu Xiao-Ni12,Xia Jian-Yang12,Zhou Xu-Hui12,Yan Li-Ming12

Affiliation:

1. Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China

2. Research Center for Global Change and Ecological Forecasting, East China Normal University, Shanghai, China

Abstract

Abstract Aims The functions of global forests are threatened by the increasing frequency of severe drought. Due to drought inducing reductions in soil nutrient availability, efficiencies of nutrient use and resorption of trees become crucial for forest functions and biogeochemical cycles. However, understanding the dynamics of responses of foliar nutrient use and resorption efficiencies to drought, especially in tropical or subtropical forests, is still limited. Our goal was to detect whether and how the importance of leaf nutrient use and resorption changes across different species in the hot and wet forests when suffering drought stress in different months. Methods Based on a 70% throughfall exclusion experiment in a subtropical forest, we collected green and senesced leaves of Schima superba and Lithocarpus glaber in different months from October 2016 to May 2019, to estimate the effects of drought on leaf nitrogen (N) and phosphorus (P) use and resorption efficiencies (i.e. NUE and PUE, NRE and PRE). Important Findings The effects of drought on nutrient use and resorption efficiencies varied between species and months. Based on a 2-year observation, drought had no effect on S. superba, but significantly decreased NUE, NRE and PRE of L. glaber by 3.4%, 20.2% and 7.1%, respectively. Furthermore, the negative drought effects were aggravated by the natural summer drying in 2017. As a result, NUE and PUE of L. glaber were significantly depressed by 17.2% and 58.1%, while NRE and PRE were significantly reduced by 56.5% and 53.8% in August 2017. Moreover, the responses of NRE, PRE and NUE to drought were related with soil moisture (SM) for L. glaber, and when SM decreased to a threshold near 9 v/v%, drought effects were shifted from unresponsive to negative. Our results highlight a species-specific threshold response of nutrient use under drought in a subtropical forest.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3