Response of leaf functional traits to soil nutrients in the wet and dry seasons in a subtropical forest on an island

Author:

Zhang Juanjuan,Liang Minxia,Tong Sen,Qiao Xueting,Li Buhang,Yang Qiong,Chen Ting,Hu Ping,Yu Shixiao

Abstract

IntroductionIsland ecosystems often have a disproportionate number of endemic species and unique and fragile functional characteristics. However, few examples of this type of ecosystem have been reported.MethodsWe conducted a comprehensive field study on Neilingding Island, southern China. The leaf samples of 79 subtropical forest tree species were obtained and their functional traits were studied in the dry and wet seasons to explain the relationships between plant functional traits and soil nutrients.ResultsWe found a greater availability of soil moisture content (SMC) and nutrients in the wet season than in the dry season. The values of wet season soil available phosphorus (5.97 mg·kg−1), SMC (17.67%), and soil available potassium (SAK, 266.96 mg·kg−1) were significantly higher than those of the dry season. The leaf dry matter content, specific leaf weight, leaf density, leaf total carbon, leaf total nitrogen, leaf total calcium, and the N/P and C/P ratios of leaves were all significantly higher in the dry season than in the wet season, being 18.06%, 12.90%, 12.00%, 0.17%, 3.41%, 9.02%, 26.80%, and 24.14% higher, respectively. In contrast, the leaf area (51.01 cm2), specific leaf area (152.76 cm2·g−1), leaf water content (0.59%), leaf total nitrogen (1.31%), leaf total phosphorus (0.14%), and leaf total magnesium (0.33%) were much lower in the dry season than in the wet one. There were significant pairwise correlations between leaf functional traits, but the number and strength of correlations were significantly different in the dry and wet seasons. The SAK, soil total phosphorus (STP), and pH impacted plant leaf functional traits in the dry season, whereas in the wet season, they were affected by SAK, STP, pH, and NO3 (nitrate).DiscussionBoth soil nutrients and water availability varied seasonally and could cause variation in a number of leaf traits.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3