Mammalian herbivory in post-fire chaparral impacts herbaceous composition but not N and C cycling

Author:

Hendricks-Franco Lindsey1ORCID,Stephens Scott L2,Sousa Wayne P1

Affiliation:

1. Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA

2. Division of Ecosystem Science, Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA

Abstract

Abstract Aims Classical theory predicts that herbivores impact herb assemblages and soil nitrogen (N) cycling through selective plant consumption and the deposition of N-rich waste, with effects dependent upon ecosystem N availability. Herbivores are predicted to accelerate N cycling when N availability is high and decelerate cycling when availability is low. However, experimental tests of these theories in natural systems are limited and have yielded contradictory results. California’s widespread chaparral shrublands provide a tractable system in which to test these theories. They are prone to periodic crown fire, which temporarily removes living shrub cover, deposits mineral N on soils and allows diverse herbaceous assemblages to dominate the landscape for 3–5 years. Chaparral is also increasingly vulnerable to herbaceous invasion; mammalian herbivory may limit the establishment of non-native herbs in the shrub understory. Methods We implemented a 2-year herbivore-exclosure experiment (Hopland, CA) to assess the impact of mammalian herbivory during early post-fire chaparral succession, both on herbaceous plant assemblages and soil N and C cycling. We predicted that, in high-N post-fire conditions, mammalian herbivory would not demonstrate a strong preference for N-fixing herbs, would accelerate N cycling and would reduce the abundance of non-native herbs. Important Findings Excluding mammalian herbivores increased herb standing biomass by 54%, but changed neither the relative abundance of N-fixing vs. non-N-fixing herbs nor any measure of N or C cycling. Herbivore impacts on nutrient cycling may not be significant over the 2-year time scale of the experiment and physical effects of herbivore activity could have counteracted the influence of plant litter and animal dung/urine inputs. Mammalian herbivores concentrated their feeding on typical non-native herbs, slightly decreasing their relative abundance; however, mammalian herbivory was not sufficient to stem the invasion of chaparral by invasive herbs or alter C and N cycling over the first 2 years after fire.

Funder

Joint Fire Science Program

National Science Foundation

Philomathia Foundation

Garden Club of America Ecological Restoration Fellowship

Stephens Lab

Department of Integrative Biology, University of California Berkeley

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3