In situ growth of large-area and self-aligned graphene nanoribbon arrays on liquid metal

Author:

Cai Le12,He Wanzhen3,Xue Xudong1,Huang Jianyao1,Zhou Ke3,Zhou Xiahong12,Xu Zhiping3,Yu Gui12

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Applied Mechanics Laboratory, Department of Engineering Mechanics and Centre for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China

Abstract

Abstract Intrinsic graphene features semi-metallic characteristics that limit its applications in electronic devices, whereas graphene nanoribbons (GNRs) are promising semiconductors because of their bandgap-opening feature. However, the controllable mass-fabrication of high-quality GNR arrays remains a major challenge. In particular, the in situ growth of GNR arrays through template-free chemical vapor deposition (CVD) has not been realized. Herein, we report a template-free CVD strategy to grow large-area, high-quality and self-aligned GNR arrays on liquid copper surface. The width of as-grown GNR could be optimized to sub-10 nm with aspect ratio up to 387, which is higher than those of reported CVD-GNRs. The study of the growth mechanism indicates that a unique comb-like etching-regulated growth process caused by a trace hydrogen flow guides the formation of the mass-produced self-aligned GNR arrays. Our approach is operationally simple and efficient, offering an assurance for the use of GNR arrays in integrated circuits.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3