Affiliation:
1. Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
Abstract
AbstractThe interlayer twist is a new degree of freedom for forming moiré superlattices in 2D vertical heterostructures, which is expected to play an important role in the emerging field of twistronics. The constructions of heterostructures by transfer and re‐stacking way have low efficiency and are prone to causing interface pollution. In this study, vertical molybdenum diselenide (WSe2)/graphene heterostructures with twisted angles are realized by using two‐step chemical vapor deposition (CVD) growth strategy. The WSe2/graphene heterostructures exhibit Raman and photoluminescence (PL) responses of both WSe2 and graphene. The PL quenching of WSe2 in the heterostructures manifests that direct CVD growth is conducive to the formation of a cleaner interlayer interface between WSe2 and graphene layers, resulting in better interlayer coupling. The adhesion and surface potential differences indicate the formation of hetero‐bilayer stacks. By analyzing the apparent growth orientations and crystal diffractions, vertical WSe2/graphene heterostructures exhibit a wide range of interlayer twisted angles (3.6–46.5°). The difference between the growth behavior with twisted angles and the typical epitaxial growth mode may originate from the heterogeneous nucleation, leading to interlayer twists of the hetero‐bilayers. These findings provide a facile protocol for the preparations of twisted hetero‐bilayers and a material system for fundamental research of twistronics.
Funder
National Natural Science Foundation of China
Beijing National Laboratory for Molecular Sciences