High-Chern-number and high-temperature quantum Hall effect without Landau levels

Author:

Ge Jun1,Liu Yanzhao1,Li Jiaheng2,Li Hao34,Luo Tianchuang1,Wu Yang45,Xu Yong2678,Wang Jian18910ORCID

Affiliation:

1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

2. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

3. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

4. Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084, China

5. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

6. Frontier Science Center for Quantum Information, Beijing 100084, China

7. RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

8. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

9. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

10. Beijing Academy of Quantum Information Sciences, Beijing 100193, China

Abstract

Abstract The quantum Hall effect (QHE) with quantized Hall resistance of h/νe2 started the research on topological quantum states and laid the foundation of topology in physics. Since then, Haldane proposed the QHE without Landau levels, showing nonzero Chern number |C| = 1, which has been experimentally observed at relatively low temperatures. For emerging physics and low-power-consumption electronics, the key issues are how to increase the working temperature and realize high Chern numbers (C > 1). Here, we report the experimental discovery of high-Chern-number QHE (C = 2) without Landau levels and C = 1 Chern insulator state displaying a nearly quantized Hall resistance plateau above the Néel temperature in MnBi2Te4 devices. Our observations provide a new perspective on topological matter and open new avenues for exploration of exotic topological quantum states and topological phase transitions at higher temperatures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3