Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides

Author:

Cai Zhengyang1,Lai Yongjue1,Zhao Shilong1,Zhang Rongjie1,Tan Junyang1,Feng Simin1,Zou Jingyun1,Tang Lei1,Lin Junhao2,Liu Bilu1,Cheng Hui-Ming13

Affiliation:

1. Shenzhen Geim Graphene Center, Tsinghua−Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

3. Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

Abstract Two dimensional transition metal dichalcogenides (TMDCs) have attracted much interest and shown promise in many applications. However, it is challenging to obtain uniform TMDCs with clean surfaces, because of the difficulties in controlling the way the reactants are supplied to the reaction in the current chemical vapor deposition growth process. Here, we report a new growth approach called ‘dissolution-precipitation’ (DP) growth, where the metal sources are sealed inside glass substrates to control their feeding to the reaction. Noteworthy, the diffusion of metal source inside glass to its surface provides a uniform metal source on the glass surface, and restricts the TMDC growth to only a surface reaction while eliminating unwanted gas-phase reaction. This feature gives rise to highly uniform monolayer TMDCs with a clean surface on centimeter-scale substrates. The DP growth works well for a large variety of TMDCs and their alloys, providing a solid foundation for the controlled growth of clean TMDCs by the fine control of the metal source.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Guangdong Innovative and Entrepreneurial Research Team Program

Guandong International Science Collaboration Project

Bureau of Industry and Information Technology of Shenzhen

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3