Plant growth ability, rather than phylogenetic relatedness, predicts the effect of soil biota from an abandoned field on native and exotic plants

Author:

Wei Chunqiang123,Jia Bingbing123,Gao Lunlun234,Liu Zhen234,Liang Yuming234,Zhang Xin5,Lu Xinmin234ORCID

Affiliation:

1. School of Life Sciences, Central China Normal University , Wuhan 430079 , China

2. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan 430070 , China

3. Institute of Invasion Biology and Agriculture Ecological Safety, Huazhong Agricultural University , Wuhan 430070 , China

4. College of Plant Sciences and Technology, Huazhong Agricultural University , Wuhan 430070 , China

5. Agricultural and Rural Water Conservancy Bureau of Jixi County , Anhui 245300 , China

Abstract

Abstract Soil biota, as legacy effects of previous species in natural ecosystems, profoundly affects plant performance in new habitats and, in turn, plant community. However, how soil biota, as legacy effects of agricultural crops, affects the likelihood of establishment of exotic and native plants in newly abandoned farmland remains poorly understood, which may hinder effective management of agricultural weeds. Here, we grew 58 plant species (28 exotic species and 30 native species) common in Central China in sterilized vs. nonsterilized soils collected from a newly abandoned maize field. We (i) estimated the effects of soil biota on plant shoot, root and total mass, (ii) explored the dependence of soil effects on the plants’ phylogenetic distance to maize, origin (native vs. exotic) and life history (annual vs. perennial) and (iii) tested which plant traits could predict soil effects. Soil biota, in general, decreased plant mass, suggesting a dominant role of enemies. The effect of the soil biota on plant total mass was unrelated to the phylogenetic distance of the plants to maize and decreased linearly with increasing plant intrinsic growth ability. Moreover, the soil biota on average had greater negative impacts on the total mass of exotic plants, particularly perennial species, than on that of native plants. Our results suggest that plant intrinsic growth ability, rather than phylogenetic relatedness, is a reliable predictor of soil effects. Additionally, native plants can benefit from plant–soil interactions in competing with exotic perennial plants when initially established in newly abandoned farmlands.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Huazhong Agricultural University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3